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Abstract—In this paper we study the problem of coveragein according to a distribution, and is relevant in applications
heterogeneous planar sensor networks. Coverage as a perfor-where the sensors’ positions cannot be selected a priori.

mance metric, quantifies the quality of monitoring provided by . : :
the sensor network. We formulate the problem of coverage as a In this paper, we analyze the following stochastic coverage

set intersection problem arising in Integral Geometry, and derive Problem. Given a planar field of interest amd sensors

analytical expressions for stochastic coverage. Our formulation deployed according to a known distribution, compute the
allows us to consider a heterogeneous sensing model, wherdraction of the field of interest that is covered by at least
sensors need not have an identical sensing capability. In addition, . sensors K > 1). The problem can also be rephrased as,

our approach is applicable to scenarios where the sensing area ;0 5 field of interest and a sensor distribution, how many
of each sensor has arbitrary shape and sensors are deployed

according to any distribution. We present analytical expressions S€NSOrs must be deployed in order for every point in the field
only for convex sensing areas, however, our results can be of interest to be covered by at legssensors with a probability
generalized to non-convex areas. The validity of our expressions p (k-coverage problem) [20].
is verified by extensive simulations. In this paper we make the following contributions. We
formulate the problem of coverage in sensor networks as
a set intersection problem. We use results from integral
Sensor networks are projected to have a significant impg@ometry to derive analytical expressions quantifying the
into our everyday lives, with applications to environmentaloverage achieved by stochastic deployment of sensors into
monitoring, home health care, disaster relief operations, agdplanar field of interest. Compared to previous analytical
ambient monitoring [1]. One of the primary tasks of sensgesults [8], [12], [20], our formulation allows us to consider
networks is the collective monitoring of a field of interesty heterogeneous sensing model, where sensors need not have
Sensors may monitor physical properties such as temperatui¢,identical sensing capability. In addition, our approach is
humidity, air quality, or track the motion of objects movingapplicable to scenarios where the sensing area of a sensor
within the field of interest. In order for the sensor networls not an ideal circle, but has any arbitrary shape. To the
to sufficiently monitor the entire field of interest, one needsest of our knowledge, only [15] considers a heterogeneous
to ensure that every point of the field is covered by at leasénsing model, though only incorporating the mean value of
one sensor. Furthermore, to provide the desired accuracy @l sensing range in the coverage computation. In addition, the
robustness against node failures, many applications requisgmulation in [15] considers only uniformly deployed sensors.
that each point of the field of interest is sensed by morg our approach, sensors can be deployed according to any
than one sensor. Hence, the problem of node deployment stribution. We provide formulas for k-coverage in the case
the purpose of sensing can be viewed awerage problem of heterogeneous sensing areas, as well as the simplified forms
defined below. in the case of identical sensing areas, and give an example for
The coverage problem is to quantify how well is the field ofne computation of the number of sensors required to cover
interest sensed by the deployment of the sensor network. Thfleld of interest with a pre-specified probability. Finally, we
coverage problem can be studied under different objectives apglidate our theoretical expressions via simulations and show
constraints imposed by the applications such as, worst-cageexact match between simulation and theory.
coverage [10], deterministic coverage [10], [12] or stochastic The rest of the paper is organized as follows. In Section
coverage [8], [10], [12], [15], [20]. The worst-case coveragg| we formulate the coverage problem as a set intersection
problem quantifies coverage based on the parts of the field®bplem. In Section IV we derive analytical expressions for
interest that exhibit the lowest observability from the sensoggverage. In Section V, we validate our theoretical results via
[10], and is relevant in applications where a desired thresh@ghulation. Section VI presents our conclusions.
number of sensors need to observe the field of interest.
The deterministic coverage problem [10], [12] quantifies the I
coverage achieved by deploying sensors in a deterministic
way, and is relevant in applications where one can selectin this section we describe related work to the coverage
the positions where the sensors are placed. The stochagtimblem in wireless sensor networks. The coverage problem
coverage problem [8], [10], [12], [15], [20], on the other hand;an be classified under different objectives and metrics. The
guantifies the coverage achieved when sensors are deplogiigrent approaches to the coverage problem are, deterministic

I. INTRODUCTION
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or stochastic sensor deployment, homogeneous or hetearea of each sensor is identical. Furthermore, the analysis in
geneous sensing area, additional design constraints sucH12$ suffers from the border effects problem, illustrated in [2],
energy efficiency, minimum number of sensors that need [8]. The results hold asymptotically under the assumption that
be deployed, or network connectivity. Based on the objectivihie field of interest expands infinitely in the plane, while the
the coverage problem formulation varies to reflect the differedénsity of the sensor deployment remains constant.
assumptions and objectives. In [15], the authors study the stochastic coverage problem
In [9], the authors study the problem of deterministic noda ad hoc networks in the presence of channel randomness. For
placement in order to achieve connected coverage, thatdssandomly deployed sensor network, the authors analyze the
sense the field of interest with the minimum number of seeffects of shadowing and fading to the connectivity and cov-
sors, while keeping the sensor network connected. The autherage. They show that the in the case of channel randomness,
assume that the sensing area of each sensor follows the timét coverage problem can still be modeled after the Spatial
disk model and consider sensors with identical sensing are@sisson distribution, by usingxpectedsize of the sensing
The problem of connected coverage has also been recemtliga of sensors. While the results in [15] are applicable to
studied in [20]. The authors provide a geometric analysieterogeneous sensor networks, they hold only for randomly
that relates coverage to connectivity and define the necessdeployed networks, and are impacted from the border effects
conditions for a network covering a field of interest to beroblem [2], [3], as noted by the authors [15].
connected. The conditions for coverage and connectivity areCompared to previous work that derives analytical coverage
derived based on the assumptions that the sensing area of eaqitessions [12], [15], [16], our formulation allows us to
node is identical and circular, and the location of the nodesnsider a network model where, (a) sensors can be deployed
is known. The authors extend their algorithms for the case afcording toany distribution, (b) sensors can have a sensing
probabilistic deployment, and also relax their assumptions &pea ofanyarbitrary shape, (c) sensors can have heterogeneous
non-unit disk sensing areas, by approximating the real senssensing areas.
area with the biggest possible circular area included in the real
sensing area. I1l. PROBLEM FORMULATION & BACKGROUND

In [16] the authors study the problem of deterministic |, yhis section, we formulate the problem of coverage in
coverage under the additional constraint that each sensor rogeneous sensor networks as a set intersection problem
have at leask neighbors. They propose a deployment strate%xising in Integral Geometry [7], [14], [17]-[19] and provide

that would maximize the coverage while the degree of eaf:gevant background for the set intersection problem.
node is guaranteed to be at leastunder the assumption that

the sensing range of the sensors is isotropic. A. Problem Formulation

In [13], the authors study the problem of coverage, as a .
path exposure problem. Using a generic sensing model andVe formulate the problem of stochastic coverage as follows.

an arbitrary sensor distribution, they propose a systemalti’f:t Ay denote the plgnar field of interest we want to mo_nitor,
method for discovering the minimum exposure path, that is tijgth areal, and perimeter,. Assume thatV sensors with

path along which the network exhibits the minimuntegral S€NSOrsi having a sensing areal;, (i = 1...N), are
observabilit}. Authors in [10], investigate the problem ofdePloyed according to a distributidii(.A,) and in such a way

best- and worst-case coverage. In their formulation of thRat they sense some part of the field of Inte?EeSEt F;, L;
coverage problem, given the location of the sensors andignote the size and the perimeter of the sensing aieaf
generic sensing model where the sensing ability of eafACh Sensos;, respectively. We want to c_alculatbe frz_;\ctlon
sensor diminishes with distance, the authors use Vororffiido thatis sensed by at leastsensors, i.e. the fraction that
diagrams and Delaunay triangulation to compute the path tiaf-covered & > 1). This problem is equivalent to computing
maximizes the smallest observability (best coverage) and g Probability that a randomly selected poift € Aq is
path that minimizes the observability by all sensors (worSENSe€d by at least sensors. We map this coverage problem
coverage). In [11], the authors provide a decentralized amjthe fc_)IIOW|r_19 set mtersecno_n problem. In_ our formulation,
localized algorithm for calculating the best coverage. a setS is defined as a collection of points in the_plane, and
Authors in [12], study the problem of stochastic coveragft?r the coverage.problem the sets arg closed regions. i
in large scale sensor networks. For a randomly distributedt€t So e a fixed closed set defined as a collection of
sensor network, the authors provide the fraction of the fieﬂP'nts in the plane, and lef, and LO_ denote the area and
of interest covered byt sensors, the fraction of nodes thaPerimeter 0fSo. Let V closed S_Et§i ((=1...N)of sizeF;
can be removed without reducing the covered area as IOI pgnr_netgrL,; be droppe_d in the plane af, according
as the ability of the network to detect moving objects. ThE @ distribution K'(Sy) and in such a way that every sé}
results presented in [12] hold only for randomly (uniformlyjnterseCts withSy. Compute the fraction of, where at least
deployed networks and under the assumption that the sensirlg\l _ _ "
ote that for sensing, we do not require that sensors are located within

the field of interest. Instead, as shown in Figure 1(a), we require that they
1The integral observability is defined as the aggregate of the time thatan monitor some part of the field of interest even if they are located outside
target was observable by sensors while traversing a sensor network. of it.
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Fig. 1. (a) A heterogeneous sensor network with sensors covering the deployment.#egifim) A convex setA and the corresponding quantities that
define the kinematic density. (c) Two convex sets, .A; intersecting, and the common argg.

k out of the N setsS; intersect. In figure 1(b), we show a sef, a randomly selected
reference poinD € S, and the axis of a coordinate system.
In the mapping of the stochastic coverage problem to tiAdl rotations and translations for the sét are defined with
set intersection problem, the fixed closed&gtorresponds to respect to the reference poinl. Integrating the kinematic
the field of intersecidy. The N closed sets dropped accordinglensity of a setd over a group of motions\ in the plane,
to the distributionK (Sy) correspond to the sensing areas ofields a measure for the set of motiofd, which is called
the N sensors deployed according to the distributféf4,). the kinematic measure [17], defined below.
By computing the fraction of the s&,, where at leaskt out Definition 2: Kinematic measure-The kinematic measure
of N setsS; intersect, we equivalently compute the fractiomn of a set of motions\ in the plane is defined by the integral
of the field of interest that is k-coveréd of the kinematic densitylA over M :
The set intersection problem has been a topic of research of
Integral Geometry and Geometric Probability [7], [14], [17]- m = /M dA. (2)
[19]. Before we provide analytical coverage expressions basedy measuring the motions of a set in the plane, we quantify
on our formulation, we present relevant background. the space of all possible positions of the set that correspond
to that motion. The quotient of the measure of any random
B. Background on Integral Geometry motion pathZ over the measure of all possible motiafe$ in

In this section, we present relevant background on Integkgl, plane, yields the probability(Z) for that random motion
Geometry that we use in Section IV for deriving analytica[gach to oceur:

coverage expressions based on our formulation. Interested
reader is referred to [7], [14], [17]-[19], as reference to ~ m(Z) 3
Integral Geometry. p(Z) = m(M)’ )

We first define the notion of thkinematic densityor the  The kinematic measure allows us to compute the geometric
group of motions of a setl in the plane, that is used to defineygpapility for a specific set configuration to occur, as depicted
a measure that quantifies the possible positiond,&fuch that (3). Equation (3), is used in our formulation to derive the

a specific event occurs [17]. The kinematic density expressgsction of the field of interest covered by a sensor deployment,
the differential element of motion of a set in the plane and g it s illustrated in the following section.

defined as follows.
Definition 1: Kinematic Density—Let M denote the group

IV. COVERAGE IN HETEROGENEOUS SENSOR NETWORKS

of motions of a set4 in the plane. The kinematic density4 In this section, we derive analytical expressions for coverage
for the group of motionsM in the plane for the set, is by analyzing the coverage problem as a set intersection prob-
defined as the differential form: lem. We first illustrate the coverage computation when a single

sensor is randomly deployed to monitor the field of interest,
dA = dz A dy A dg, @) by studying the intersection of two sets in the plane. We then
where denotes the exterior product used in exterior calculg®mpute coverage when the sensor is deployed according to a
[5], [6], (x,%) denote the Cartesian coordinates, ardenotes distribution K (Ay). We extend our expressions to the general
the rotation angle ofd with respect to ther axis of the case whereV sensors are deployed at random. We compute
coordinate systefn[17]. the fraction of the field of interest covered by exadtlgensors
in the case of heterogeneous sensing areas and simplify the
°Due to their equivalencedo and S as well as the terms sensing aregormyla when the sensors have identical sensing areas. Finally
and set are used interchangeably in the rest of the paper. . . . ) !
we compute the fraction of the field of interest covered by at

4For every setd, one can randomly choose a reference péintased on
which all translations and rotation motions 4f are defined. leastk sensors.



A. Coverage Achieved by Random Deployment of a Singlg().4; # 0 is:

Sensor
. . . m(A; s Ao A1 #£0) = / dA
Let us consider the simple case where a single semsor “ Oﬂ 170) Ao () AL#£D !
is randomly deployed in such a way that it monitors some
part of the field of interest. The achieved coverage can be = /AO 1 Ans dz Ady A dg

computed by considering the intersection of two sets in the
plane. LetAy,.4; denote two sets in a plane with, being
fixed, while 4; can move freely.4, represents the field of Due to the length and complexity,
interest, W.hiIeAl represents the sensing area of negdeThe Interested reader is referred to [17], [18] for details.
average size of the common arela; between setsdo, As, By combining (5) and (6) we can compute the probability
when A, is randomly dropped in the plane, defines the are

of Ag, covered byA;. Normalizing Ay, over Ay we obtain p?P € A) as:

= 27T(F0+F1)+L0L1. (6)

the proof of (6) is omitted.

the fractionfr(Ay) of Ay covered byA;. In figure 1)(c), we m(A; : P € Ag) A1)
show two sets4,, A; and the common area between them. p(PeA) = (AL Ao (AL # D)
To computefr(.Ay), we randomly select a poir® of Ay, o,
and find the set of all positions of; that includeP. Dividing = E ) Loy ©)
the measure of all the positions df; that includeP over the
measure of all the positions of; such thatAy().A; # 0 [ ]

yields the probabilityp(P € A;) that the randomly selectedNote thatp(P € A;) is only dependent on the area and the
point P is covered byA; [17], [18]. Integratingp(P € A1) perimeter of the convex sets that intersect and not on the shape
over all P € Ay and normalizing over the size ol yields of those sets.

fr(Ap). The following theorem holds only for convex sets,

though it can be extended in the case of non-convex sets by-emma 1:The fractionfr(Ao) of a fixed convex set, of

appropriate computation of the kinematic measures [17], [L&]€aFo and perimeter., that is covered by a convex sg
of areaF; and perimeter’,, when A4, is randomly dropped

in the plane in such a way that it intersects widly is given
Theorem 1:Let Ay be a fixed convex set of areg, and by:
perimeter Ly, and let. A; be a convex set of are&d; and oy
perimeterL,, randomly dropped in the plane in such a way fr(Ao) = o (Fo + F1) + LoLy (8)
that it intersects with4,. The probability that a randomly
selected pointP € A, is covered byA; is given by:

Proof: Equation (7) expresses the probability that a
20 F, randomly seIecFed poir® € Aq is cpvered b%l. Integrating
FoF F) 1 Lolr (4) (7) over all pointsP € Ay provides the sizeFy; of the
04 051 common aready; betweenA, and A; :

p(P S Al) = o

Proof: The probability thatP is covered byA, is equal oo = /Perp(P € AP
to the measure of the set of motions.4f such thatP ¢ A;
divided by the measure of the set of motions4f such that = p(Pe «41)/13 B dpP
Ao A (. We now compute the two measures. €40
0 m 1 7& p _ p(P c Al)FO
) . - 27TFOF1 (9)
m(Al IPGAoﬂfh) Q / dA, 27T<F0+F1)+L0L1.
PeAy ﬂ Ay
(i) / A Normalizing Fy; by Fj yields:
- 1
PecA, F
o fr(Ay) = 201
= dx A dy do Fo
PeA, 0 . 2n kol i
= 27k, )  2n(Fy+ F1) + LoL, Fy
_ 27TF1
where in 5(i) we integratél.A; over all motions ofA; such - 2n(Fy+ Fy) + LoLy
that P € Ay().A;. Since by assumptio®® € Ay and A, is = p(P e A). (10)

fixed, in 5(ii) we integratelA; over all motions ofA4; such
that P € A;. The measure of all motions ofl; such that [ ]



B. Coverage Achieved by Deployment of a Single Sensxactlyk sensors is equal to the probability thiatis covered

According to an Arbitrary Distribution by exactlyk specific sets. LeT” denote dsx(f ) matrix where
In the case where thed, is not randomly deployed in each rowj is a k-permutation of the vectdt ... N], and let

the plane, but it follows an arbitrary distributiohi(Ao), the G denote &N —k-+1)x(};) matrix where each row contains
measures in (5), (6) are calculated as weighted functions (B elements ofl... NJ, that do not appear in thg'" row

the probability density functio(z, y, ¢) of A, . of T. Consider for exam_p_IeT(l) = 1. ..k]_and G(1) =
[k +1...N]. The probabilityp(7'(1)) that P is covered by
m(A; : A ﬂfh £0) = / kdx Ady Adp, (11) exactly the sets with indexes in the first rowBfis given by:
Z

p(T(1)) 2 p(PEA,....P & Ajsr,....P ¢ Ay)
O pPed),....(PcA

m(A; : P e Ay ) A) / kdx A dy A do,(12)
PcA

where Z = Ag(N A1 # 0. Depending on the distribution p(P ¢ A1), .., p(P ¢ AN)
K (Ap), the measures in (11), (12) may have a closed form. (i) o,

When A, is deployed according to the distributidii(.A), " 2n(Fo+ 1)+ LoLs

we can calculate the probabiliy(P € A;), by substituting 29 F,

the measures in (11), (12) into (7). TheP € A,), is the
basic building block for deriving expressions for coverage in
the general case wher€ sensors are deployed, as we show
in the following section.

27 (Fo + Fx) + LoLg
27TFO + LoLk+1
27(Fo + Frq1) + LoLg1a

27TFO + LOLN
C. Coverage in the Case of Multiple Sensors 7 2n(Fo+ Fy) + LoLn
In this section, we compute the probabilityS = k) that H?zl(Qij) Hi\’:kH(ZnFO + LoL,)

a randomly selected poin® € Aq is covered byk sensors =

N
when N sensors are randomly deployed. Usp(@ = k), we [Tr—y @m(Fo + Fr) + LoLy)

compute the probability tha® is covered by at leagt sensors, _ H§:1 (QWFTl,j) Hi\’:]k (27TF0 + L()Lcl,z)
as well as the fraction afl, covered by at least sensors. Hi\le (27 (Fy + F,) + Lo L) ‘
Theorem 2:Let Ay be the field of interest of sizé,, and (15)

perimeterLy, and letN sensors with sensing are§ of size
F; and perimeterL; be deployed overd,. The probability
p(S = k) that a randomly chosen poitit of 4, is covered
by exactlyk sensors whet > 1 is given by:

In (i), we show whichk sets include pointP. Due to the
independence in the set deployment, in (ii), the intersection of
the events in (i) becomes a product of the individual events. In
(i), we substitute the individual probabilities from (7), (14).

(%) [k Nek 5/ In the general case, the probability that the sets with indexes
S— k) = 2= (Hj:l(%FTi'j) IT= j(l’z)> 13y of thei’" row of T' cover pointP is given by:
p( - ) - N ) ( )
H7':1(27T(F0 + Fr) + LoLy) & N—k )
.. . .. . . HJ:l (27TFT1J) Hz:l j(lﬁz)
where 7 (i, j) = (2rFy + LoLg, .), T is a matrix in which p(T(i) = =% . (16)
each rowy is a k-permutation ofl ... N], andG is a matrix [T=1 @7 (Eo + Fr) + LoLy)
in which each row; Sgntains the elements ¢f... N], that  gince we are not interested in a specific set permutation to
do not appear in thg** row of T. cover pointP, the probability thatp(S = k) is a summation

Proof: In order to prove Theorem 2, we map the problerﬂ]c p(T'(7)) for all possiblek-permutations. Summing(T (7))

of coverage to the set intersection problem, as illustrated in e alli yields (13):

problem formulation in Section IlI-A. When a single senspr )

is deployed, the probability that it covers a randomly selected (S=k) = p(T())
point P € Ay is given by Theorem 1. Hence, the probability ~
p(P ¢ A;) can be computed as: (%) . e
p(PEA) = 1—p(PeA) - [Toy @nFr ) 1.5 T 2)
., o F, =\ I, @r(Fo + F) + LoLy)
QTF(FQ—‘y-FZ) —|—L0Ll ]
2mFy + LoL;
- 27 (Fy Jfﬂ) i Lol (14)  According to Lemma 1, (13) also expresses the fractiodef

that is covered by exactly sensors. Equation (13) is valid for
Given that fact that theV sensors arendependentlyleployed . > 1. The fraction of theA4, that is not covered by any
in the plane so that they cover some partef the probability sensor, is given by the following corollary.
p(S = k) that a randomly selected poifit € Ay is covered by
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Fig. 2. Fractionfr(Ap) of Ag, that remains non-covered as a function of the number of sed$disat are deployed to monitor the field of interest.

Corollary 1: The fraction of Ay that is not covered by any Theorem 3:Let A, be the field of interest of sizéy and
sensor whenV sensors are randomly deployed is given by, perimeterL,, and let N sensors with sensing are of size

N F; and perimeterL; be deployed ovetd,. The probability

2mFy + LoL; that a randomly selected point of, is covered byat leastk
—0) = : 17 0
p($=0) H 2 (Fy + F;) + LoL; (17) sensors is given by:
Proof: Given that fact that théV sensors aréndepen-
dently deployed in the plane so that they cover some part of p(S>k) = 1= p(S=h) (20)
Ayp, the probabilityp(S = 0) that none of thed;, i =1... N
covers pointP is: where
PS=0 = p(P¢A...P¢AY) S0 (T @nrn ) IES" 7 (.2))
N L .
) p(S=h)= .
0 H (P ¢ A) 1, (2n(Fy + F) + LoL,)
; Proof: Theorem 3, holds by observing:
(i 2nFy + LoL;
B 1:[<27T (Fo+ F;) +LoL; ) (18)

k—1
PS>k =1-p(S<k)=1-> p(S=h), (21)
Equality in (i) holds due to the independence in the deploy- h=t

ment of the sensors;. In (ii), we substitutep(P ¢ A;) from and substituting (13) into (21). [ |
(14). [

In the case where the sensors have identical sensing area, that V. VALIDATION OF THE THEORETICAL RESULTS

is, F; = I and L, = L then the following corollary holds. In this section, we validate our theoretical results derived in

Corollary 2: Let F; = F and L; = L. The probability Section IV via simulation. We perform experiments for both
that a randomly selected point of, is covered by exactlyy nomogeneous and heterogeneous sensor networks and show
sensors is given by that the theoretical formulas match the simulations. We also

provide an example for analytically computing the number of
(M @rF)*(2rFy + LoL)N~* (19) sensors that need to be deployed in order to achieve the desired

p( ) (@n(Fo+ F) + LoL)" degree of coverage.

A. Coverage in Homogeneous Sensor Networks
Proof: Corollary 2 holds by substituting; = F and

: In our first experiment, we randomly deployed a variable
L; = L, into (13). P y aeploy

number of sensors with identical sensing area in a disk of

Once we have computed the probability for a randomp&ad?usR = 100m. All sensors had a cirgular sensing area of
selected p0|ntp of AO to be covered by exacﬂﬂ Sensors, radiusr = 10m. We repeated the eXperImentS 100 times and

we can also compute the probability that a randomly select@¥eraged the results. We first compute the fracifiofids) of
point P is covered byat leastk sensors. Ap, that remains non-covered as a function of the number of

sensorsN that are deployed to monitor the field of interest.
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Fig. 3. (a) The pdf of the fractiorfr(Ao) covered by exactly: sensors wherlV = 300 sensors with identical sensing area are randomly deployed. (b)
The fraction fr(.Ap) covered by at least sensors wherV = 300 sensors with identical sensing area are randomly deployed. (c) The pdf of the fraction
fr(Ap) covered by exactlys sensors wherlV = 500 sensors with identical sensing area are randomly deployed. (d) The frgtiofy) covered by at
leastk sensors wherlV = 500 sensors with identical sensing area are randomly deployed. (a) The pdf of the fracfidn) covered by exactly: sensors
when N = 1000 sensors with identical sensing area are randomly deployed. (f) The frgttiofp) covered by at least sensors whedV = 1000 sensors

with identical sensing area are randomly deployed.

The theoretical formula that computes(A4,) is obtained the theoretical formula in (22) conforms with the simulation
from Corollary 1 and is equal to: results. Since our method does not suffer from the border effect
problem, (22) is accurate despite the bounded size of the field

2nFy + LoL N :
fr(Ao) =p(S=0) = (277( mFy + Lo L> @) of interest.

Fo+ F) + Lo _ :

In figure 3(a), we show the pdf of the fractiofr(A4)
where Fy = 7R%, Lo = 2nR, F = nr?,L = 27r. In figure covered by exactly sensors whenV = 200 sensors with
2(a), we show the fractiorfr(A4g) of Ap, that remains non- identical sensing area are randomly deployed. The equivalent
covered as a function of the number of sensdrshat are sensor density is equal tp = 0.0063 sensorgm?. The
deployed to monitor the field of interest. We observe thaame graphs folV = 600, N = 1000 (densitiesp = 0.019
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Fig. 4. Fractionfr(Ap) of Ag, that remains non-covered as a function of the number of sedédisat are deployed to monitor the field of interest.

sensorgm?, p = 0.032 sensorgm?) are provided in figures sensor density is equal tp = 0.0095 sensorgm?. The

3(c) and 3(e), respectively. The pdf g#(Ay) is equal to same graph folN = 500, N = 1000 (densitiesp = 0.019

the probability that a randomly selected poiftis covered sensorgm?, p = 0.032 sensorgm?) are provided in figures

by exactlyk sensors. Our analytical derivation in Section 1V5(c) and 5(e), respectively. Thé(Ay) covered by exactly<

yields: sensors is equal to the pgfS = k) of the probability that
a randomly selected poir® is covered by exactly sensors.

fr(Ao) = p(S=k) Our analytical derivation in Section 1V, yields:
() @rF)k(@2nFy + LoL)N—F

- 2r(Fy+ F) + LoL)™ (23) fr(Ao) =p(S =k)

In figure 3(b), we show the fraction afl, covered by FOrk=0:

at least £ sensors whenV = 200. The same graphs for N 2mFy + LoL;

N = 600,N = 1000 are provided in figure 3(d) and fr(Ao) = H <27r(F0 Y F)+ LOLi> )

3(f), respectively. For both values ¢f we observe that our i=1

theoretic formulas conform with the simulation results. For aWhile for £ > 1 :

graphs in figure 2, 3 we show the theoretical result according (M & Nek .

to our expressions, and the simulation values. Fr(Ao) = 22i=1 (szl(%FTi.j) [ JG, Z))
0) — N .

B. Coverage in Heterogeneous Sensor Networks [[,=@n(Fo + F) + LoLy)

In our second experiment, we considered a hierarchicalln figure 5(b), we show the fraction aoff, covered by
(heterogeneous) sensor network, where two types of sensdrdeast k sensors whenV = 300. The same graphs for
are deployed. Typel has a sensing area of disk shape with & = 500, N = 1000 are provided in figures 5(d), and
sensing range 4 = 10m, while type B has a sensing area of2(f), respectively. We again verify that our theoretical formula
disk shape with a sensing rangeqf = 15m. We randomly agrees with the simulation results.
deployed an equal numbe¥, = Np = % of sensors of In the case of heterogeneous sensor networks where each
each type over a circular field of interest of si#g = 7R2 Sensor has a different sensing area, the formula in (25)
where R = 100m. In figure 4, we show the fractiorir(4,) has an exponentially increasing computational cost, since an
of Ay, that remains non-covered as a function of the numb@xponentially increasing summation of terms must be com-
of sensorsV that are deployed to monitor the field of interesfouted in order to derive the exact coverage achieved. Such a

The theoretical formula that compute that is equal to: computation may not be feasible for large networks. In such
a case, an approximation can be used for our formulas by
fr(Ao) = p(§=0) employing the expressions derived for a homogeneous sensor
N 21 Fy + LoL; network and substituting the sizé and perimeterl. of the
- H 21(Fo + Fy) + LoL;’ (24) sensing area of the sensors with the expected BiZ¢ and
i=1 expected perimeteF[L]. The theoretical approximation for
where Fy = mR?, Lo = 27 R, F; = mr? L = 27r;. such a case is:
We observe that the simulation results verify the validity
of our theoretical expression. In figure 5(a), we show the pdf friAo) = pg\*? = k)
of the fraction fr(.Ay) covered by exactly: sensors when () @mE[F))*F(2nFy + LoE[L])N*

= (25
N = 300 sensors are randomly deployed. The equivalent (27 (Fy + E[F)) + LoE[L)™ (3)
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Fig. 5. Heterogeneous sensor network, with the field of interest being a disk of f@ditg00m. An equal number of two types of sensors are deployed;
Type A has a sensing area of a disk shape with radiys= 10m, while type B has a sensing area of a disk shape with= 15m. (a) The pdf of the
fraction fr(Ag) covered by exactlyt sensors wherV = 300 sensors. (b) The fractioffir(Ap) covered by at least sensors wherlV = 300 sensors. (c)
The pdf of the fractionfr(.Ao) covered by exactly: sensors whe@N = 500 sensors. (d) The fractiofir(.Ag) covered by at least sensors whe@V = 500

sensors. (e) The pdf of the fractigh (.Ag) covered by exactlyc sensors wherV = 1000 sensors. (f) The fractiorfr(.4g) covered by at least sensors
when N = 1000 sensors.

In figure 6(a) we show the pdf obtained via simulation fo€. An Example of Computing the Coverage in a Sample
our heterogeneous sensor network experimentMoe 500 Network
sensors, the theoretical values based on the exact formula in ] ] )
(25), and the approximation in (25). In figure 6(b), we show In this section, we provide an example of applying our
the fraction of 4, covered by at least sensors. We observer€sults to a sample sensor network. Considetai of size
that for the case of heterogeneous sensor networks whére= 10°m? and perimetetL, = 4,000m where sensors of
each sensor has a different sensing area, (25) provides a g@tical sensing are&’ = 1007 and perimeterl = 20w
approximation of the coverage achieved, without incurring tf§€ randomly deployed. We want to compute the number of
computational cost of (25). sensors needed in order for a randomly selected point of the

Fol to be covered by at least one sensor with a probability
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Fig. 6. Heterogeneous sensor network, with the field of interest being a disk of f@diug00m. An equal number of two types of sensors are deployed,
Type A has a sensing area of a disk shape with radiys= 10m, while type B has a sensing area of a disk shape with= 15m. (a) The pdf of the
fraction fr(.Ag) covered by exactly: sensors wherV = 500 sensors. (b) The fractiofir(.Ap) covered by at least sensors wherdV = 500 sensors.

pc = 95%. Or alternatively, the number of sensa¥sneeded,
so that a fractiome = 0.95 of the field of interest is covered

1
by at least one sensor. Corollary 1 yields: .

p(S>1) = 1—p(S=0) (2]
N
i1 27T(F0 + F) + LoL
N
_ 2nFy + LoL . 4]
2n(Fo+ F) + LoL

We want to the probability of 1-coverage to be at legst >
1) > p. Hence,

2nFy + LoL N
P(S>1) = 1-— > [8]
(§=1) (mﬂ&+pj+g¢> =po=
log (1 — o
N og (1 — pc)
2nFo+LoL [10]

-]

Substituting the values fqi¢, Fy, Lo, F, L yields N > 9,728
Sensors.

27 (Fo+F)+LoL

(11]

VI. (12]

We studied the problem of stochastic coverage in plan@pl
heterogeneous sensor networks. We formulated the coverage
problem as a set intersection problem and used results fram
Integral Geometry to obtain analytical expressions for the
coverage achieved by the deployment &f sensors. Our [15]
formulation generalizes to a heterogeneous sensing model
where each sensor has a different sensing area, whilellf
does not suffer from the border effects problem. Furthermore,
our approach applies to sensor deployment according to angj
distribution. To verify our results, we performed extensive
simulation and showed that the simulation conforms with olff
theoretic formulas. [19]

CONCLUSION

ACKNOWLEDGEMENTS (201
This work was supported in part by the following grants:
ONR award, N0O0014-04-1-0479; ARO grant, W911NF-05-1-

0491.

REFERENCES

I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey
on Sensor NetworksJEEE Communications Magazineol. 40, No. 8,

pp. 102-116, 2002.

C. Bettstetter, and J. Zangl, “How to Achieve a Connected Ad Hoc
Network with Homogeneous Range Assignment: An Analytical Study
with Consideration of Border Effects,” WCNC '02, 2002, pp. 125-129.
C. Bettstetter, and O. Krause, “On Border Effects in Modeling and
Simulation of Wireless Ad Hoc Networks, in Proceedings of the IEEE
MWCN ’01, 2001.

T. Bonnesen, and W Fenchel, “Theorie de Convexen Korper,” Ergeb.
Math. Springer, Berlin, 1934.

H. Flanders,Differential Forms with Applications to the Physical Sci-
encesAcademic Press, New York, 1963.

H. Flanders Differential Forms,Prentice Hall, New Jersey, 1967.

D. Filipescu, “On some Integral Formulas Relative to Convex Figures in
the Euclidean SpacE-,” Stud. Cerc, Mat., Vol. 23, 1971, pp. 693-709.
C. Huang, and Y. Tseng, “The Coverage Problem in a Wireless Sensor
Network,” in Proceedings of WSNA '03, 2003 pp. 115-121.

K. Kar, and S. Banerjee, “Node Placement for Connected Coverage in
Sensor Networks,” in Proceedings of WiOpt '03, March 2003.

F. Koushanfar, S. Meguerdichian, M. Potkonjak, and M. Srivastava, Cov-
erage Problems in Wireless Ad-Hoc Sensor Networks, in Proceedings
of the IEEE INFOCOM 01, March 2001, pp. 1380-1387.

X. Li, P. Wan, and O. Frieder, “Coverage in Wireless Ad Hoc Sensor
Networks,”|[EEE Transactions on Computergol. 52, No. 6, 2003, pp.
753-763.

B. Liu, and D. Towsley, “A Study of the Coverage of Large-scale Sensor
Networks,” in Proceedings of MASS '04, 2004.

S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak, “Exposure
in Wireless Ad hoc Sensor Networks,” in Proceedings of MobiCom '01,
July 2001, pp. 139-150.

R. Miles, “The Assymptotic Values of Certain Coverage Probabilities,”
Biometrika, Vol. 56, 1969, pp. 661-680.

D. Miorandi, and E. Altman, “Coverage and Connectivity of Ad Hoc
Networks in Presence of Channel Randomness,” in Proceedings of the
IEEE INFOCOM 05, March 2005, pp. 491-502.

S. Poduri, and G. S. Sukhatme, “Constrained Coverage for Mobile
Sensor Networks,” in Proceedings of IEEE International Conference on
Robotics and Automation '04, May 2004, pp. 165-172.

L. Santalo, Integral Geometry and Geometric Probabilithddison-
Wesley Publishing Company, 1976.

L. Santalo, “Geometrica Intregral 4: Sobre la Medida Cinematica en el
Plano,” Abh. Math. Sem. Univ. Hamburgpl. 11, 1936, pp. 222-236.

M. Stoka, “Alcune Formule Integrali Concenernenti i Corpsi Convessi
dello Spazio Euclided®s,” Rend. Sem. Mat. Torind/o. 28, 1969, pp.
95-108.

G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless and C. Gill, “Integrated
Coverage and Connectivity Configuration for Energy Conservation in
Sensor Networks,ACM Transactions on Sensor Network®]. 1, No.

1, 2005, pp. 36-72.



